

TransFuture – Innovate the Future of Transportation

Santanu Roy, PTP

Autonomous and Connected Vehicles

- Five-fold roadway capacity increase
- 90% + reduction in crashes
- New driving experience

Shared Mobility

- Potential to reduce fleet size by 90 percent
- Shared auto-ownership impacts
- Internet of things big data

Why Now?

Moore's law – computing power doubles every 2 years

Market is Ready

- 78 cities participated in Smart Cities challenge
- 34 States enacted autonomous vehicle legislation since 2012

- Traditional tools and methods are falling short of answering policy questions of tomorrow
- How do you make the right investment decisions?

Introducing TransFuture

- Next-gen scenario planning tool
- Prepare for multiple futures
- Consider uncertainty more explicitly
- Support a desirable future by incorporating flexibility
- Add-on lens to improve decisionmaking

Planning for Multiple Futures

Traditional planning for most likely future Acknowledging uncertainty Future Baseline

Probabilistic Scenario Planning Scenario I Considering multiple Scenario II

futures and uncertainties

Composite Uncertainty Cone

Planning for multiple futures

Source: Adapted from Global Business Network (2007)

PLAN FOR THE FUTURE

A new tool is being developed by HDR to aid in decision-making by exploring multiple futures, evaluating uncertainties and considering potential outcomes.

Development Approach

Identify Trends

Quantify Trends

Deterministic to Probabilistic

Understand Uncertainties

Make Informed Decisions

Implementation Plan

Emerging Trends

Changing Demographics

- Millennial travel behavior
- Aging population
- Generation Z

Improved Technology

- Automated vehicles
- EVs
- · Rise of robots
- Improved user information & navigation
- Smart City

Shifting User Preferences

- Urbanization
- Shift from individual ownership to fleet ownership
- Telecommuting
- E-commerce & delivery options

Improved Travel Options

- Better walking and biking options
- Improved public transit
- Shared mobility

Literature Sample

- Autonomous Vehicle Implementation Predictions VTPI
- NCHRP Report 750, Informing Transportation's Future TRB
- Preparing a Nation for Autonomous Vehicles Eno Center
- Shared Mobility and the Transformation of Public Transit APTA
- Millennials & Mobility: Understanding the Millennial Mindset APTA
- City of the Future National League of Cities
- Shared Mobility and the Transformation of Public Transit APTA
- Evaluating Carsharing Benefits VTPI
- Planning for an Uncertain Future: Using Scenario Planning to Add Clarity When the Future Is Unclear TRB

Automated Vehicles

- Capacity increase
- Demand increase

Shared Mobility

Figure 1. Growth rates for alternative transit modes

- Reduction in auto ownership
- Potential increase in trips
- Fleet size reduction

Rise of Robots

- Jobs at risk for automation
- Transformation of the labor force
- Jobs of Generation Z (1995-today)

Conceptual Framework

Frontend

- Regional travel demand model files
- Define scenarios

- Probabilistic results and confidence intervals - AADT, VMT, VHT, etc.
- Scenario comparison
- Facility footprint

Backend

- Regression analysis
- Elasticity analysis
- Monte Carlo Simulation

Methodology Framework

Accounting for Uncertainty

Hypothetical Corridor Analysis – Baseline

Hypothetical Corridor Analysis – Build

• AV/ CV market penetration 2035 – 10%; 2060 – 50%

- Two emerging trends considered
- Aging population Reduced demand
- Automated vehicles Capacity increase, Demand increase

Hypothetical Corridor Analysis – Build

We are 90% confident that the 2060 AADT will be <170,000

Hypothetical Corridor Analysis – Build

New Paradigm

- Don't over build cost savings
- Preserve ROW for potential future need
- Invest in technology future proof investments
 - Cable, power, machine vision (reference markers), data management

New Paradigm

- Design flexibly modular lanes concept
 - Dynamic lane markings
 - Right pavement design
 - Full depth shoulder
- Technology roadmap

Innovate the Future

"The best way to predict the future is to invent it" - Alan Kay, Computer Scientist

John Zielinski SIS Administrator FDOT District Five

John.Zielinski@dot.state.fl.us

Santanu Roy, PTP

Vice President

HDR Engineering, Inc.

Santanu.Roy@hdrinc.com

